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ABSTRACT 

Fourier transform methods common in infrared spectroscopy were applied to the problem of calculating the modulation 
transfer function (MTF) from a system’s measured line spread function (LSF).  Algorithms, including apodization and 
phase correction, are discussed in their application to remove unwanted noise from the higher frequency portion of the 
MTF curve.  In general, these methods were found to significantly improve the calculated MTF.  Apodization reduces 
the proportion of noise by discarding areas of the LSF where there is no appreciable signal.  Phase correction 
significantly reduces the rectification of noise that occurs when the MTF is calculated by taking the power spectrum of 
the complex optical transfer function (OTF). 
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1. INTRODUCTION
While there are many methods available for measuring MTF in electro-optical systems, indirect methods are among the 
most common.  The system MTF is defined as the amplitude of the OTF, which is the Fourier transform of the line 
spread function (LSF).  One of the most common methods used to determine the MTF is to measure the LSF either 
directly or by taking the derivative of the edge spread function and performing a Fourier transform on the result.  Simply 
calculating the FFT and then calculating the amplitude by multiplying the complex OTF by its complement can 
introduce unwanted artifacts.  Below we discuss the application of apodization and phase correction, algorithms 
commonly used in Fourier transform spectroscopy, to the problem of measuring MTF.  

1.1 Measuring MTF 

Deriving a meaningful MTF from imperfect experimental data can be challenging.  Noise and detector imperfections can 
produce artifacts that make the extraction of a good MTF curve difficult to say the least, especially as the cutoff 
frequency is approached.  One of the most common problems is that by taking the magnitude of the OTF any measured 
noise is rectified, leading to a frequency spectrum that never gets to zero at high frequencies.  In many IR systems, it is 
difficult to maximize the signal to noise ratio without clipping the system.  If the signal to noise ratio is too low, the 
system MTF will have additional "ringing".  If the signal to noise ratio is too high, clipping will lead to a nonsensical 
MTF. 

In modeling a sensor's performance, one of the most important quantities is the pre-sample MTF.  If the measured pre-
sample MTF never reaches a valid cutoff point (where it instead trends to a fixed modulation value greater than zero), 
then it is difficult for a system tester to determine how the actual MTF behaves.  For instance, the system could cut off at 
the first point where the MTF approaches this floor, or this MTF floor could be included in the results until the half 
sample rate.  In predictive models, such as NVTherm IP, these choices will greatly affect the overall calculated sensor 
performance. 

1.2 Ideal Systems 

In order to simplify the analysis and focus on the tools to be considered, much of this discussion is based on simulated 
MTF data.  The top portion of Figure 1 shows calculated MTF curves for two systems.  One is a “perfect” system with a 
cutoff frequency of 2.5 cyc/mR, the other is an ideal system with a 5 cyc/mR cutoff but with a ½ wave defect of defocus. 
The bottom portion of Figure 1 shows the same systems but with each MTF being calculated after the addition of a 
Gaussian noise distribution to the ESF used to calculate the MTF.  The addition of the noise makes the two curves so 
similar as to make them difficult to distinguish, yet they represent systems with significantly different MTFs.  The 
following discussion will demonstrate how the application of some tools commonly use in Fourier transform 
spectroscopy can help improve the extraction of MTF curves from a LSF with noise.  It is important to note that neither 
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of these techniques involves assumptions of a particular curve shape to the MTF.  Although they have limitations, as 
does virtually any kind of data processing technique, they can be applied with modest care and significantly improve the 
data. 
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Fig. 1. The above shows plots of calculated MTF curves for two systems.  The first is a system with a 5 cyc/mR cutoff, 
without aberrations but with a defect of focus of ½ wave.  The second is an ideal system with a 2.5 cyc/mR cutoff.  The 
upper plot shows the calculated theoretical MTF for the two systems.  The lower plot shows the calculated MTF after 
the addition of a Gaussian noise distribution to the ESF used to derive the MTF. 

2. MODELING AND SIMULATION
Previous work has been performed studying random and fixed pattern noise in MTF measurements, including 
comparisons of using the LSF and ESF to calculate MTF as well as the use of super-resolution to overcome aliasing 
present in systems where the detector under-samples the optical system response[1].  In the current study, the point of 
interest is in making changes to how the Fourier transform is used to extract a MTF from the LSF.  The methods 
described below apply, regardless of how the LSF was acquired.  In order to help simplify the analysis and have a known 
result for comparison, ideal LSF curves were generated.  Noise was added with a Gaussian distribution and then the 
derivative was taken to generate the simulated LSF with noise. 

For the ideal curve, a perfect, diffraction-limited MTF was used: 
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where is the complex optical transfer function (OTF), Ô ξ  is the spatial frequency and cutoffξ is the system cutoff 
frequency[2].  The system with the defect in focus was calculated using a Bessel function expansion which will not be 
reproduced here in order to save some space.  The series and its derivation can be found in Williams and Becklund[3]. 

Once an OTF was calculated, an ideal LSF was generated by applying an inverse Fourier transform (3).  The LSF was 
then numerically integrated to produce an ESF.  Noise was added to the ESF in the form of a Gaussian distribution with 

www.sbir.com 1



a variance of about 0.5% of the edge maximum.  This result was then numerically differentiated to produce the LSF with 
noise to be processed. 

2.1 Fourier transform 

The Fourier transform convention used was the following: 

Forward transform: 

, (2)dxexhfH ifx∫
∞

∞−

−= π2)()(

and the inverse transform: 

 . , (3)dfefHxh ifx∫
∞

∞−
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where is the frequency response function and is the spatial response function.  Hence, the MTF is derived 
by performing the forward transform on the LSF.  Both the above were implemented as discrete Fourier transform 
routines for use in the numerical studies. 

)( fH )(xh

2.2 Jargon 

In the following discussion many MTF curves will be presented that were derived by several variations of calculation. 
In all cases the MTF is the amplitude of the OTF, though calculated or manipulated by different means.  In order to keep 
things separate and clear for discussion, the following convention is used:  If a MTF is derived by multiplying the 
complex OTF by its complex conjugate, it will be termed the MTF from the power spectrum or simply the power 
spectrum.  A MTF calculated using the phase correction algorithm discussed below will be referred to as a phase 
corrected MTF. 

3. RESULTS AND DISCUSSION
3.1 Apodization 

One method used to reduce noise and help smooth a spectrum is to actually limit the LSF before it is transformed.  This 
limiting is called apodization, the definition of which is “removing the foot.”  In many cases an LSF is measured out to a 
distance so far from the line or edge target that the system noise dominates over any contribution from the edge or slit. 
MTF curves rarely have any meaningful narrow features, so measuring far from the edge to get additional resolution is 
often not warranted.  In fact, it simply adds to the proportion of noise in the MTF spectrum as N , where is the 
number of points collected.  For pattern noise the situation is worse, as collecting more points simply adds coherently to 
that pattern’s power in the MTF spectrum in direct proportion to .  The best way to limit both is by selecting the 
appropriate resolution of the MTF spectrum required for the intended use and then not trying to exceed it.  One might be 
tempted to average the higher frequency MTFs to get back to the same SNR at lower resolution. This proposition would 
work for random noise until the point where the MTF becomes comparable to the noise.  At this point rectification 
begins to occur, which then causes the average value to remain higher than the true MTF.  Rectification causes the noise 
distribution to deviate from the normal distribution about zero.  Because of this, the typical

N

N

N improvement when 
averaging points is not obtained.  Reducing the resolution does not suffer this effect because the “noise” is removed 
prior to rectification.  Figure 3 shows the resulting MTFs from transforming the LSF of the defocused system, shown in 
Figure 2, with two different lengths and averaging using the same sample spacing.  The first is the full-resolution using 
4096 samples, the second uses the center 1024 samples and the third is a 4 point running average of the full-resolution 
4096 point result.  The noise spectrum above the 5 cyc/mR cutoff for 1024 is roughly half that of the 4096 point result as 
would be expected.  However, the 4 point moving average does not show the same improvement for the reason 
mentioned above. 

N
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Fig. 2. The above shows the calculated LSF with noise of the 5 cyc/mR cutoff system that has a defect of focus of ½ wave. 
The full resolution LSF can be transformed to yield a spectrum that has resolution of 0.0125 cyc/mR.  This LSF is 
apodized with a centered boxcar that is a total of 1024 points long with the rest of the data being filled with zeroes. 
This limits the effective resolution to 0.05 cyc/mR, though the calculations are interpolated to 0.0125 cyc/mR.  Results 
for both are shown in Figures 3 and 4. 
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Fig. 3. This figure shows the results of calculating the MTF using the power spectrum of the LSF shown in Figure 2.  This 
represents the defocused 5 cyc/mR system and shows both the full resolution and apodized results.  Apodizing to ¼ of 
the full resolution reduces the high frequency noise, though it is still rectified. 
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Fig. 4. This figure shows the results of the application of a 512 point apodization to both the defocused 5 cyc/mR system 

and the ideal 2.5 cyc/mR system.  Compared to Figure 1, the apodization has helped considerably.  However, the MTFs 
calculated using the power spectrum are still rectified and difficult to differentiate. 

This choice to use a lower resolution MTF can be made after the data is collected. Even though a LSF is measured over a 
wide range, not all the data need be used and can be eliminated by an appropriate apodization.  Apodization involves 
multiplying a function  (such as the LSF) by an apodization function  over the range of the function .  
The simplest apodization is the called a “boxcar”: 
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So termed because of the shape of the apodization function with which the LSF is multiplied. Other apodization 
functions are frequently used in FTS, however they should be used with caution as they can introduce subtle, unwanted 
artifacts.  Figure 4 shows the result of the application of a +/- 256 point boxcar apodization to the two systems being 
considered.  The effect is to essentially keep only the center 512 points of the LSF and replace the rest with zeroes.  
Because the FFT proceeds with the same number of points, the resulting MTF is also sampled at the same high 
resolution.  However, the removal of data to be replaced by zeroes effectively reduces the real resolution resulting in the 
smooth curve shown.  While similar at low frequencies, note that the results are not just the average of the full resolution 
curves at higher frequencies.  Removing the points that were effectively noise has helped reduce the overall power of the 
noise in the spectrum.   

3.2 Phase Correction 

Although apodization can help, it still leaves a rectified spectrum.  An algorithm exists which can help with this problem 
as well.  Phase correction[4][5][6][7] refers to an algorithm developed to remove phase errors in Fourier transform 
spectroscopy (FTS).  FTS involves performing a Fourier transform on an interferogram to determine a sample’s response 
at various wavelengths of light.  It is essentially the same as performing the transform of the LSF to get a system’s MTF.  
Phase correction uses a single side (plus a little more) of a measured interferogram to calculate a spectrum that has been 
corrected for phase errors such as sampling error (where the center of the interferogram is not exactly sampled) as well 
as errors introduced by the interferometer, such as imperfect mirrors.  Rather than extracting the amplitude by the 
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performing the FFT on a two-sided LSF, it calculates the amplitude by multiplying the complex OTF by the inverse 
phase calculated from a low resolution LSF.  Consider the following: 

  (5) dxexLefMfO ifxfi ∫
∞
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where  is the system MTF and  is the LSF.  If the phase function )( fM )(xL )( fφ  is assumed to be slowly varying, 

it can be calculated using a lower resolution (apodized) version of the LSF resulting in )( flrφ .  Then, instead of using 

 )(ˆ)( fOfM = , (6) 

use 

  (7) )()(ˆ)( fi lrefOfM φ−=

to calculate the MTF.  The subtle difference in the two being that by using the low resolution phase, any random high 
resolution noise is not rectified.  Coherent noise sources such as fixed pattern noise are not improved through phase 
correction, though they can be reduced through judicious apodization.   In optical spectroscopy it is often advantageous 
to collect a single-sided interferogram so that a higher resolution spectrum can be obtained without having to generate 
twice the required path difference.  This is not usually the case in MTF measurements, in fact, since a two sided LSF is 
usually measured, the procedure can be performed on each side of the LSF separately and the results averaged to further 
reduce the noise.  Should the need arise, the method works perfectly well for a single sided LSF as well, provided there 
is enough data on the opposite side of the center to calculate the low resolution phase. 

The concept of phase correction as presented herein is fairly direct.  However, its implementation does involve some 
attention to detail.  For a full explanation of the method, see the references[4][5][6][7]. 
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Fig. 5. This figure shows the results of the application of a 512 point apodization to both the defocused 5 cyc/mR system 

and the ideal 2.5 cyc/mR system as well as phase correction.  Compared to Figure 4, the phase correction has helped by 
not rectifying the high frequency noise at low amplitudes.  Despite starting with very noisy data as seen in Figure 1, the 
two MTF curves are now separable.  Stronger apodization can smooth the curves further, but the remaining low 
resolution variations can become distracting, or even corrupt the low frequency MTF as seen in Figure 10. 
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Fig. 6. This figure shows the beginning and end results for the defocused system.  Note that high frequency portion of the 

MTF is properly moving around zero after the phase correction and that with the combination of phase correction and 
apodization the step out to the 5 cyc/mR is resolved. 

  
 

Fig. 7. This image shows the tilted edge used to derive the MTF for the real system considered here.  The edge spread 
function was derived from the above image using a super-resolution technique. 
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3.3 Real systems 

To demonstrate the usefulness of the procedures described above on real systems, they were applied to a real LWIR 
system.  The system was an un-cooled VOx array with 640*480 elements with an ideal optical cutoff frequency of 7 
cyc/mR and the first zero of the detector footprint MTF at 5.6 cyc/mR For this case the LSF was generated using a tilted-
edge super-resolution method[1][8].  Figure 7 shows the tilted edge used to derive the LSF.  Figure 8 shows the results of 
applying a modest apodization and phase correction to the system, compared to the full resolution, power spectrum 
result.  As in the synthetic data, the high frequency noise is reduced and averages about zero.  Using a stronger 
apodization makes the MTF smoother, but does not significantly reduce the average noise power.  Furthermore, it has 
the very undesirable effect of producing distortions in the low frequency portion of the MTF as shown in Figure 9. 
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Fig. 8. This figure shows the result of applying phase correction and apodization to the real system.  As with the simulated 

data, the high frequency noise is reduced and no longer rectified.  The system has an optical cutoff frequency of 7 
cyc/mR and the first zero of the detector footprint MTF is at 5.6 cyc/mR.  

 

4. CONCLUSIONS 
Fourier transform methods developed for FTS were shown to have good application in MTF measurements, especially in 
systems where the SNR is low.  Apodization can help significantly reduce the noise contribution to a frequency spectrum 
if the ESF was sampled too far from the edge.  Phase correction helps prevent rectification of random noise through the 
use of a low resolution phase calculation and a single-sided LSF.  Phase correction is limited in its ability to affect 
coherent noise sources and apodization should not be overly strong or the risk of significant low frequency errors 
becomes problematic.     
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Fig. 9. This figure demonstrates the peril of trying to smooth too much through apodization.  While the noise beyond the 

cutoff frequency is smoother with a 32x reduction in resolution, the low frequency portion of the MTF has been 
distorted. 
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