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ABSTRACT  

We report on the design and testing of a 2-color dynamic scene projector system based on the MIRAGE-XL infrared 
scene projector.  The system is based on the optical combination of two 1024x1024 MIRAGE-XL resistive arrays.  
Algorithms derived for 2-color operation are discussed and system performance data is presented, including radiometric 
performance, sub-pixel spatial co-registration and compensation for spectral cross-talk.  
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1. INTRODUCTION  
In recent years, 2-color focal planes have been put to use in seeker applications in order to improve target discrimination.  
With the introduction of such systems comes the need to test them.  Hardware in the loop (HWIL) testing has been used 
in many applications as a way to engage in high fidelity testing of a complete seeker system.  The addition of a second 
color to the seeker requires additional complexity in order to provide an accurate representation of the desired radiance 
to the seeker in the two bands of interest.  When the sensors are tested in a hardware-in-the-loop (HWIL) environment, 
this requirement for radiometric calibration, spatial alignment, and temporal accuracy are in turn imposed on the 
projection systems used for testing[1].  
 
If left uncorrected, the spatial misalignment and radiometric overlap can lead to significant band-to-band and band-to-
truth simulation errors[1,2,3,4].   Since 1999, Santa Barbara Infrared (SBIR) has been delivering one-color infrared 
scene projector (IRSP) systems used to provide high fidelity imagery for HWIL testing.  Moving to a 2-color system 
imposes additional requirements on these systems to ensure the band-to-band accuracy is acceptable for testing.  The 
basic components of a 2-color system include two 1-color emitter systems, a collimator and a dichroic beam combiner.  
In principle, such a system would simply require the output of the two one-color systems to be aligned such that they are 
overlapped through the beam combiner.  In practice, this simple ideal becomes more complex.   
 
There are two main issues requiring significant effort to address.  The first issue is spectral overlap of the two bands.  In 
the event that the two spectral bands to be simulated are relatively close, the situation may arise such that they cannot be 
completely optically separated and the system under test (SUT) will see contributions to the radiance of one band from 
the output of the other band’s emitter array.  Due to this spectral overlap, the measured radiance of the two bands is not 
independent.  In order to correct for this effect, some method of spectral compensation must be employed.   
 
The second issue is sub-pixel spatial co-registration of the two bands.  The insertion of a beam combiner affects the 
optical path of each band differently.  Perfect co-registration of both bands at every pixel is generally not possible.  In 
order to overcome pixel alignment issues, a form of electronic co-registration has been implemented.  The spectral and 
spatial correction features will be discussed briefly below and the results of initial testing be given.   

 

2. SYSTEM DESCRIPTION 
2.1 General System  

The 2-color system consists of a 2-color collimator with a dichroic beam combiner and two infrared scene projection 
(IRSP) systems based on the MIRAGE-XL design by Santa Barbara Infrared (SBIR), a HEICO company.  Figure 1 
shows a block diagram of the 2-color system.  Figure 2 shows a block diagram of the collimator and some images of the 
completed system.   The two IRSP systems described here are derivatives of the MIRAGE-XL system produced by 
SBIR[5,6].  MIRAGE-XL is a 1024x1024 resistive emitter array capable of operating at 200Hz and producing apparent 
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processor operated in its full 1024x1024 frame mode at a maximum of 200Hz.  The TIP2 card has twice the bandwidth 
of the original TIP card and includes the capability to perform the spectral compensation calculations on each pixel.  
Once those calculations are done, only the corrected drive for each band need be further processed, so the bandwidth of 
the rest of the system need not be doubled. 

In addition to providing accurate radiance in both bands, the system must ensure that the scenes from the two bands 
overlap properly.  The typical desire for this is to achieve scene co-registration to better than 1/4 of a pixel.  Producing 
an optical system that aligns each pair pixels from two 1024x1024 arrays to such an accuracy is not practical.  Alignment 
of a single pair of pixels is straight-forward, but with different optical paths for the two including distortions and slight 
variations in field size, aligning the entire array is virtually impossible.  In order to provide accurate, overlapping 
radiance from the two bands, a spatial correction must be made.  In order to properly locate radiance sources with better 
than 1 pixel accuracy, an interpolation must be performed.  This correction is performed in real time based on a spatial 
calibration.   

Two spatial algorithms are required in a 2-color system: the TRP function and the 2-color spatial correction.  In both 
cases, input simulation data pixels must be mapped to output pixels to be displayed by the emitter array.  Due to discrete 
nature of the input and output data, there cannot, in general, be a perfect one-to-one mapping of input pixels to output 
pixels; therefore, some sort of compromise must be made.  There are two options for performing the spatial correction: 
a) doing a nearest-neighbor and nearest-correct-pixel replacement in the output data, or b) performing an interpolation.  
Nearest neighbor pixel replacement prevents blurring of the input image, but can lead to sampling artifacts and 
registration errors.  Interpolation allows proper registration, but leads to blurring.  For the standard 1-color MIRAGE-XL 
system, the interpolation method was selected for the translation and rotation function.   

Two-color spatial correction has similar limits to translate and rotate with similar artifacts depending on the choice of 
algorithm.  Performing both functions independently would cause the errors from the respective artifacts to be 
compounded.  Consider the worst case scenario using interpolated functions:  If a single input pixel were illuminated and 
then its located after translation and rotation were shifted half a pixel in both the vertical and horizontal directions, it 
would end up at the corner of 4 pixels and its radiance would be evenly spread amongst those four pixels.  If those four 
were then moved half a pixel up and over, due to the 2-color spatial correction, the initial radiance of that one pixel 
would be spread into 9 pixels.  The potential for this additional blurring makes performing the two corrections 
independently undesirable.  The 2-color MIRAGE-XL system described here avoids the additional blurring by 
performing the TRP and 2-color spatial correction in a combined algorithm that interpolates only after both corrections 
have been made.  This algorithm was discussed in detail in 2010[7]. 

 

3. SYSTEM PERFORMANCE 
 
The unique nature of the 2-color system made performance verification challenging in several areas.  Performance of 
each of the subsystems was measured in turn.  Key performance metrics are presented below.  The collimator was 
optimized for the LWIR region of the infrared (IR) spectrum.  Testing of a 1024x1024 array requires an imager of 
comparable resolution.  The camera selected for system test and validation was a FLIR Photon 640 microbolometer 
camera. Although microbolometers are not as sensitive as cooled LWIR cameras, they are more ubiquitous and 
significantly less expensive than the cooled cameras.  SBIR has spent several years developing non-uniformity 
correction algorithms to make use of microbolometers for radiometric testing of emitter arrays [8,9] and those algorithms 
along with the experience gained in their development were applied to make the camera suitable for the validation tasks.  
The system validation falls into three categories:  Radiometric, spectral and spatial, which are presented below. 

 

3.1 Radiance  

Providing an accurate radiometric image is the primary goal of any IRSP system.  For a 2-color system, the radiometric 
performance of each band’s subsystem must be measured.  The primary radiometric performance metrics of IRSP 
systems are maximum apparent temperature, operability and non-uniformity, as measured after a non-uniformity 
correction (NUC) is applied.  Table 1 gives the key performance metrics for bands A and B of the system.  Figure 4 
shows the operability map of each of the two bands and Figure 5 shows the combined operability map.  Figure 6 shows 
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3.2 Spectral  

Testing the spectral correction algorithm and calibration presented a challenge.  A suitable customer furnished 2-color 
SUT was not available at the time of system delivery, so the system had to be validated with the single band 
microbolometer mentioned above.  In order to simulate a 2-color system, images from the two bands were collected 
through two spectral filters which allowed enough radiance overlap such that the spectral correction algorithm would be 
required and hence, could be used and then validated by limiting the cross-talk between the two bands.  Data was 
collected from the two filter bands using each of the two emitter systems.  From that data, a calibration curve was 
derived and applied to the system.  The spectral correction was then tested by commanding a series of images with 
varying overall radiance as well as relative radiance between the bands.  The results of the tests are given in Table 3. 

 

Table 3.  Results from spectral correction

 
 

3.3 Spatial  

Testing the spatial correction was the most difficult portion of system validation, in large part because the system 
required calibration and validation at three different fields of view.  Cost is always a consideration and the three fields of 
view would each require a separate, custom lens for optimal calibration and validation. In an effort to be more efficient, 
a concept to use the  field selection lens groups as fixed focus lenses for the camera was put forth.  The thought was to 
use the next more narrow field of view lens group from one of the paths as the primary camera lens.  The stock lens is 
removed and the camera body mounted to a 3-axis motion control stage to allow for positioning and focus of the image.  
Using the lens group for the mid field of view (MFOV) to view the wide field of view (WFOV) allowed slightly more 
than 1/4 of the emitter array to be imaged at a time.  With the lens fixed, the camera body was moved to image each of 
the 4 quadrants of the array for calibration and later validation.  The intent was to use the same concept with the narrow 
field of view (NFOV) lens to view the collimator in MFOV mode.  However, this was not practical due to a lack of 
sufficient radiance through the NFOV lens group due to its high f/#.  A standard SBIR f/5 reflective collimator was used 
to view the NFOV and could view the entire field in one image.  That same collimator was used with the MFOV, 
viewing the 4 quadrants in turn as with the WFOV.  Figure 7 shows the results from the NFOV test.  Slight distortions 
combined with extrapolation of the calibration points at the edge of the field caused a few of the pixels on the edges to 
exceed 0.25 pixel co-registration error.  However, most of the field had less than 0.1 pixels of spatial error. 
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